Unit 10: Probability and Statistics Patterns, Functions, and Algebra

SOLs: 4.13 a,b & 4.14 & 4.16

VOCABULARY

Probability: the chance of an event happening

Outcome: a possible result after an event has occurred

Event: an experiment that has a set of possible outcomes

Axis: the "x" and "y" lines and that cross and form perpendicular lines and a graph

Line graph: a graph that tells whether something has increased, decreased, or stayed

the same with the passage of time.

Bar graph: compare different categories of data using bars

Commutative property of addition and multiplication: changing the order of addends

and factors will not change the sum or product

Associative property of addition and multiplication: changing the groupings of ad-

dends and facts will not change the sum or product

Likelihood

Certain- It is <u>certain</u> that a standard die will land on 1,2,3,4,5, or 6 when rolled

Likely- It is <u>likely</u> that there will be a boy in your homeroom class.

Equally likely— It is <u>equally likely</u> that I will flip heads or tails Unlikely— It is <u>unlikely</u> that I will draw an ace when I draw from a deck of cards

Impossible – It is <u>impossible</u> that I will draw a purple card from a standard deck of cards

Sample of Events

A standard die (dice is plural) has six sides.

Each side is numbered 1-6.

Cards

Ace 2 3 4 5 6 7 8 9 10 Jack Queen King

Red Diamonds Black Clubs Red Hearts Black Spades

Probability

Probability is represented by a fraction or a number between 1 and 0.

These are parts that are needed for a line graph

$$(1+2)+3=1+(2+3)$$

Associative Property

Associative Property

You can change the grouping of addends:

$$3 + (7 + 29) = (3 + 7) + 29$$

Or factors:

$$2x3 = 3x2$$
 $6 = 6$

Examples

Commutative Property

Commutative Associative Property

You can change the order of the addends:

$$4 + 3 = 3 + 4$$

Or factors:

Algebra Break Down

We need to fill in the blank
The left hand side equals 10 because (7+3=10)

10 = 6 +___

The right hand side has to equal 10 as well. You can solve for the blank two different ways

- 1) Use subtraction to identify the number that belongs in the blank 10-6=4 OR
- 2) Identify what number added to 6 equals 10 6+4=10 Both sides now equal 10

$$7 + 3 = 6 + 4$$

Algebra Break Down

$$3 \times 4 = 2 \times \underline{}$$

We need to fill in the blank
The left hand side equals 12 because (3 x 4= 12)

The right hand side has to equal 12 as well. You can solve for the blank two different ways

- 1) Use division to identify the number that belongs in the blank $12 \div 2 = 6$ OR
- 2) Identify what number multiplied with 2 equals 12 $6 \times 2 = 12$

$$3 \times 4 = 2 \times 6$$

Both sides now equal 12

Patterns Numbers

20, 25, 30, 35, 40, 45, 50, ____, 60

RULE

Add 5

. 98, 90, 82, 74, 66, 58, 50, 42, ____

Subtract 8

Patterns Numbers

2, 4, 8, 16, 32, ____

RULE

Multiply by 2

32, 16,8, 4, ____

Divide by 2

Patterns Shapes

0000000

Number Machines

Input or Output Machines

12 15 18

Complete the pattern if it were to continue on the number line.

In and Out Charts

